上一篇,我講了為什么堅(jiān)信人工智能。今天已成歷史。
人工智能,就好像第四次工業(yè)革命,正從學(xué)術(shù)界的私藏,轉(zhuǎn)變?yōu)橐环N能夠改變世界的力量。尤其,以深度學(xué)習(xí)取得的進(jìn)步為顯著標(biāo)志。
它讓匍匐前進(jìn)60年的人工智能一鳴驚人。
我們正降落到一片新大陸。深度學(xué)習(xí)帶來的這場(chǎng)重大技術(shù)革命,有可能顛覆過去20年互聯(lián)網(wǎng)對(duì)技術(shù)的認(rèn)知,實(shí)現(xiàn)技術(shù)體驗(yàn)的跨越式發(fā)展。
那么,深度學(xué)習(xí)到底是什么?怎么理解它的重要性?
我們先從概念和現(xiàn)象入手。
我總結(jié)了一句話,學(xué)術(shù)上看未必嚴(yán)謹(jǐn),但從我的理解角度看——深度學(xué)習(xí)是基于多層神經(jīng)網(wǎng)絡(luò)的,海量數(shù)據(jù)為輸入的,規(guī)則自學(xué)習(xí)方法。
這里包含了幾個(gè)關(guān)鍵詞:
第一個(gè)關(guān)鍵詞叫多層神經(jīng)網(wǎng)絡(luò)。
深度學(xué)習(xí)所基于的多層神經(jīng)網(wǎng)絡(luò)并非新鮮事物,甚至在80年代被認(rèn)為沒前途。但近年來,科學(xué)家們對(duì)多層神經(jīng)網(wǎng)絡(luò)的不斷算法優(yōu)化,使它出現(xiàn)了突破性的進(jìn)展。
以往很多算法是線性的。而這世界上大多數(shù)事情的特征是復(fù)雜非線性的。比如貓的圖像中,就包含了顏色、形態(tài)、五官、光線等各種信息。深度學(xué)習(xí)的關(guān)鍵就是通過多層非線性映射將這些因素成功分開。
那為什么要深呢?多層神經(jīng)網(wǎng)絡(luò)比淺層的好處在哪兒呢?
簡(jiǎn)單說,就是可以減少參數(shù)。因?yàn)樗貜?fù)利用中間層的計(jì)算單元。我們還是以認(rèn)貓為例好了。它可以學(xué)習(xí)貓的分層特征:最底層從原始像素開始學(xué)習(xí),刻畫局部的邊緣和紋;中層把各種邊緣進(jìn)行組合,描述不同類型的貓的器官;最高層描述的是整個(gè)貓的全局特征。
它需要超強(qiáng)的計(jì)算能力,同時(shí)還不斷有海量數(shù)據(jù)的輸入。特別是在信息表示和特征設(shè)計(jì)方面,過去大量依賴人工,嚴(yán)重影響有效性和通用性。深度學(xué)習(xí)則徹底顛覆了“人造特征”的范式,開啟了數(shù)據(jù)驅(qū)動(dòng)的“表示學(xué)習(xí)”范式——由數(shù)據(jù)自提取特征,計(jì)算機(jī)自己發(fā)現(xiàn)規(guī)則,進(jìn)行自學(xué)習(xí)。
你可以理解為——過去,人們對(duì)經(jīng)驗(yàn)的利用,靠人類自己完成。在深度學(xué)習(xí)呢?經(jīng)驗(yàn),以數(shù)據(jù)形式存在。因此,深度學(xué)習(xí),就是關(guān)于在計(jì)算機(jī)上從數(shù)據(jù)中產(chǎn)生模型的算法,即深度學(xué)習(xí)算法。
問題來了,幾年前講大數(shù)據(jù),以及各種算法,與深度學(xué)習(xí)有什么區(qū)別呢?
過去的算法模式,數(shù)學(xué)上叫線性,x和y的關(guān)系是對(duì)應(yīng)的,它是一種函數(shù)體現(xiàn)的映射。但這種算法在海量數(shù)據(jù)面前遇到了瓶頸。國際上著名的ImageNet圖像分類大賽,用傳統(tǒng)算法,識(shí)別錯(cuò)誤率一直降不下去,上深度學(xué)習(xí)后,錯(cuò)誤率大幅降低。在2010年,獲勝的系統(tǒng)只能正確標(biāo)記72%的圖片;到2012年,多倫多大學(xué)的 Geoff Hinton利用深度學(xué)習(xí)的新技術(shù),帶領(lǐng)團(tuán)隊(duì)實(shí)現(xiàn)了85%的準(zhǔn)確率。2015年的ImageNet競(jìng)賽上,一個(gè)深度學(xué)習(xí)系統(tǒng)以96%的準(zhǔn)確率第一次超過了人類(人類平均有95%的準(zhǔn)確率)。
計(jì)算機(jī)認(rèn)圖的能力,已經(jīng)超過了人。尤其圖像和語音等復(fù)雜應(yīng)用,深度學(xué)習(xí)技術(shù)取得了優(yōu)越的性能。為什么呢?其實(shí)就是思路的革新。
舉幾個(gè)腦洞大開的例子。
?。?)
先說計(jì)算機(jī)認(rèn)貓。
我們通常能用很多屬性描述一個(gè)事物。其中有些屬性可能很關(guān)鍵,很有用,另一些屬性可能沒什么用。我們就將屬性被稱為特征。特征辨識(shí),就是一個(gè)數(shù)據(jù)處理的過程。
傳統(tǒng)算法認(rèn)貓,也是標(biāo)注各種特征去認(rèn)。就是大眼睛,有胡子,有花紋。但這種特征寫著寫著,有的貓和老虎就分不出來,狗和貓也分不出來。這種方法叫——人制定規(guī)則,機(jī)器學(xué)習(xí)這種規(guī)則。
深度學(xué)習(xí)方法怎么辦呢?直接給你百萬張圖片,說這里有貓,再給你上百萬張圖,說這里沒貓。然后再訓(xùn)練一個(gè)深度網(wǎng)絡(luò),通過深度學(xué)習(xí)自己去學(xué)貓的特征,計(jì)算機(jī)就知道了,誰是貓。